
Journal of Statistical Physics, VoL 24, No. 1, 1981 

Nonequilibrium Phase Transitions and Chemical 
Instabilities 

G. Dewel, 1'2 P. Borckmans, 1'2 and D. Walgraef 1'2 

Received January 8, 1980 

The effect of inhomogeneous fluctuations on instabilities in various nonlinear 
chemical models is studied in terms of concepts developed in the theory of 
equilibrium phase transitions. 
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1. I N T R O D U C T I O N  

The similarity between equilibrium phase transitions and instabilities in 
systems driven far from equilibrium has been pointed out by various 
authors. r Great progress has been achieved recently in the study of 
equilibrium phase transitions. For instance, the theory of the renormaliza- 
tion group has furnished techniques to assess the effect of the inhomoge- 
neous fluctuations, ca) Also, the concept of spontaneous symmetry breaking 
has proved a useful tool in the derivation of general relations for the 
correlation functions independently of any approximation. (4) It is the main 
purpose of this paper to review the possibility and the opportunity of 
applying these concepts to the understanding of order and structures in 
nonequilibrium systems mainly in chemical models. The paper is organized 
as follows. In Section 2, the model is presented. Section 3 is devoted to the 
study of nonequilibrium critical phenomena in multiple-steady-state sys- 
tems. In Section 4 the emergence of spatial periodic patterns is discussed, 
whereas Section 5 summarizes the role of the fluctuations near the Hopf 
bifurcation leading to chemical oscillations. 
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2. THE R E A C T I O N - D I F F U S I O N  EQUATIONS 

We consider open systems in which a set of chemical reactions is 
taking place. For the sake of brevity we suppose isothermal and mechanical 
equilibrium. The phenomenological rate equations for the local concentra- 
tions of the intermediate species {Xi} then take the form 

a,x, = f,(( xj },x) + D, V2X, (2.1) 

{Di) are the diffusion coefficients, ( f )  the rates of change of (Xi} due to 
chemical reactions, and )t stands for a set of parameters describing the 
external constraints. We assume natural boundary conditions (infinite 
systems or periodic conditions). 

Starting from the homogeneous steady state (Xi ~ corresponding to the 
law of mass action at equilibrium, these systems are able to display a large 
variety of instabilities when one increases the external constraint (X) be- 
yond the linear regime around thermal equilibrium. In the deterministic 
description the bifurcation theory may be applied to study the vicinity of 
these transition points. However, many authors have stressed the need to 
include the local fluctuations in the description of systems in which a 
coherent behavior takes place on the macroscopic level. (l'2) In chemical 
systems, the fluctuations have been mainly analyzed using the master 
equation approach. In this birth and death description, the fluctuations are 
modeled as Markov processes in the appropriate phase space. (~ In the 
inhomogeneous case, this theory leads to multivariate master equations 
whose complex structure is now the object of interesting studies. (s) We 
have adopted a more phenomenological approach in which the influence of 
the fluctuations is taken into account in a plausible but more or less ad hoc 
manner. Following the Landau-Lifshitz theory of fluctuating hydrodynam- 
ics we add a Langevin term s to the right-hand side of Eq. (2.1). 
Because these noise terms describe processes on a shorter range in space 
and time than the coarse-grained scale of our description, we assume (6) 

(,~i(r, t)~j(r', t ')) = 2[r,~(r) + V2r}(r) ] 6(r - r') 3( t  -- t') (2.2) 

If we further assume that the system remains in a state of local equilibrium 
throughout the entire transition region, the coefficients F c and I "d may be 
determined by a local fluctuation-dissipation theorem. (7) Indeed, the non- 
equilibrium phase transitions involve macroscopic disturbances which do 
not modify the fluctuations on a microscopic scale where the short-scale 
equilibrating processes remain efficient in maintaining local equilibrium. 

We first investigate the stability of the homogeneous steady state (X/~ 
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with respect to infinitesimal perturbations. Linearizing Eq. (2.1), we get 

Xq(t)= X q ( t ) -  X, ~  1 fdre,qrx(r)  
Lu/2 

i 3txq(t) = Lo.(q2,X)x~(t ) (2.3) 

where 

C0(q 2, x) = (0f#%) o-  q2D, 
The stationary state is asymptotically stable if all the eigenvalues of the 

matrix L O. have negative real parts. Among the various instabilities which 
may develop when )t is varied, we consider in this paper the following three 
possibilities: 

1. L 0 has one eigenvalue coq(2t) = 0 for q = 0 and ~ = ~c, corresponding 
to transitions between homogeneous steady states. 

2. L//has one eigenvalue O~q(X) = 0 for Iql = qc (q~ =~ 0) and )t = Xc; this 
soft mode instability induces the formation of stationary periodic structures 
(Turing instability). 

3. L,j has two complex conjugate eigenvalues with zero real part when 
= Xc, qr = 0. This hard mode instability may lead to time-periodic solu- 

tions of the limit cycle type. 

3. CRITICAL PHENOMENA IN MULTIPLE-STEADY- 
STATE SYSTEMS 

As a prototype we consider the Schl6gl model (8) 

kl 
A + 2 X . ~ 3 X  

k2 
k3 (3.1) 

B + X ~ C  
k4 

Using standard notations, <5) the deterministic rate equation for the Fourier 
transform xq(t) of the local concentration may be written in the case of an 
ideal mixture: 

3;Xq(TC) = - [ ( 3  + 3)a 2 + qaD]xq + L - d / 2 3 a 2 x q _ k x k  
g 

- L - " 2  ~ x~xk,Xq_k_~, + L d/2(1 + 3')a 3 (3.2) 
k k' 

where 

kl - 3; k 3 b  - (3 q- ~)a22 k4c  - (1 q- ~ ' ) a  3 
r = k2 t ;  k2  k2  k2  
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and D = D x / k  2, where D x is the diffusion coefficient of the intermediate 
species X. 

The nonequilibrium critical point is characterized by 8 = 0, 8 '=  0, 
x c = a. The fluctuations yq -- Xq/a - 1 around this point obey the follow- 
ing equation: 

O,yq = - ( 6  + q2D )yq + L'~/2(6 ' - 6) 

- L - d E  2 YkY,,,:'Yq-k-k'+ %(r) (3.3) 
k k' 

with a2"7 = 1- and D = D / a  2. 
Because the diffusion-originated contribution to the noise in Eq. (2.1) 

is negligible in the long-wavelength limit, we assume 

(T]q ('r)T/q,('r')> = 2F 8q,_ q, 8 ('7 -- I"') (3.4) 

with F ~ 1/a  = const. The stationary solution of the Fokker-Planck equa- 
tion corresponding to (3.3) takes the form 

est({Yk}) = ~'C e x p [ -  ~-({Yk})] (3.5) 

where % is a normalization constant and 

1 j + -~ L - d 2  E YJk 'Yk"Y-k -k ' - k "  (3.6) 
k' k" 

Recently, Nicolis and Malek-Mansour (5) have analyzed the multivariate 
master equation for the same model using a singular perturbation ap- 
proach. They have shown that near the critical point, the system may be 
described by a generalized potential identical to (3.6). The kinetic potential 
obtained by integrating the differential form dxP occurring in the Glans- 
dorff_Prigogine (1) criterion reduces to the functional (3.6) sufficiently close 
to the instability 8, 6' ~ 0. 

The analogy of the potential (3.5) with the Ginzburg-Landau Hamilto- 
nian is striking; the amplitude of the critical mode plays here the role of the 
order parameter, in agreement with the Landau-Hopf  picture. As a result, 
the renormalization-group methods can be applied in order to evaluate the 
nonclassical exponents characterizing the critical point for d < 4. (3) We get, 
for instance, at the order e = 4 - d, 

( y q ) = ( - - 8 ) f l S q , O  [ /~=�89 if 8 < 0 , 8 = 8 '  (3.7) 

(yq) = (8')1/88q,0 [ g =  3 + r + O(e2)] for 8 = 0 

Similarly, the correlation function gq = (.yq.V_q) satisfies as 8 ~ 0  (8 = 8') 
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the scaling form 

g(q) -- ( 1 /8  ~ )D(qZ/6 2~) (3.8) 

with ~, = 1 + ~e + O(e 2) and I, = 17 + O(1[2). 
A similar analysis can be applied to other multiple-steady-state sys- 

tems, such as, for instance, photothermal instabilities or the Edelstein 
model, where an adiabatic elimination of the stable modes must be per- 
formed in order to derive the generalized potential. O) In principle, one can 
transpose the concept of universality class to nonequilibrium critical phe- 
nomena: each static class of universality is determined by the space 
dimensionality and the number n of unstable modes at the critical point. 
However, all the chemical models studied up to now belong to the same 
class n = 1 isomorphic to the Ising model. The domain of validity of the 
mean-field theory can be estimated by the Ginzburg criterion. (3) In the 
notations of formula (3.6) it takes the form 

F/(lg61/2) < 1 (d -- 3) (3.9) 

where l 0 -- D 1/2 = (Dy,Tchem)l/2 and "rchem is a characteristic chemical relax- 
ation time. 

Since we have supposed in the estimation of the noise that the 
microscopic fluctuations are not modified by the macroscopic constraints, 
F is of the same order of magnitude as in equilibrium phase transitions. On 
the contrary, the correlation length far from the critical point l 0 is much 
greater for nonequilibrium phase transitions because of its macroscopic 
nature. As a consequence, the width of the nonclassical critical region 
6eL----- 1/lo 6 is reduced with respect to the case of equilibrium phase transi- 
tions. Only for very fast chemical reactions and slow diffusion would the 
nonclassical behavior be experimentally attainable. Nevertheless, due to the 
large variability of the chemical rate constants, chemical instabilities re- 
main the best candidate for the observation of nonclassical indices. 

On the other hand, when diffusion becomes more efficient than the 
chemical reactions, l o is very great and finite-size effects rapidly become 
important. Indeed, when 6 = 6 o = (lolL) 2 (L is a characteristic length of 
the reactor), the main contribution in (3.6) comes from the spatially 
uniform fluctuations (Yq=0). The order parameter then behaves coherently 
over the whole system. Using the standard auxiliary field technique, the 
static correlation function may be calculated exactly. From (3.6) we get 
when 6 = 6' 

~ ,/2 D_3/z(6(a/2r) 1/2) 

where D,,/2(n ) is a parabolic cylinder function. Using the asymptotic 
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expansions of these functions below threshold 8( f t /2F) l /2> 1, we get 
( y Z } ~ F / 8 ~ 2 ,  whereas far above ( 8 < 0 ) ,  181(f~/2F)l/2> 1, we obtain 
(y2} ~ 18 [. At the instability (y2} remains finite and it is given by 

r 1/2 r (3 /4 )  
<Y2} = 2 ( ~ )  F(1/4)  ( 8 = 0 )  (3.11) 

The �89 dependence in the volume has been derived previously for 
this model using a master equation approach. (1~ Away from the critical 
point this zero-dimensional transition looks like mean field theory; how- 
ever, it becomes rounded when 8 ~ 8  r = F/~2. Similar results have been 
obtained in zero dimension for complex order parameters in the case of the 
laser threshold, small superconducting particles, and the B~nard instabil- 
ity.(11) 

For most equilibrium phase transitions, one has 80 << 8eL and the size 
effects may be safely neglected, whereas for many nonequilibrium instabili- 
ties 8GL << 8 o, which prevents the observation of the effects due to inhomo- 
geneous fluctuations. 

4. PHASE TRANSITIONS TO NONUNIFORM STEADY STATES 

We now consider the "Brusselator" reaction scheme (i): 
kl 

A ~ X  

k2 
B + X ~ Y + D  

k3 
2X + Y ~ 3 X  

k4 
X ~ E  

The system is driven by keeping A in excess, whereas D and E are instantly 
removed. The concentration of the injected B then plays the role of X, the 
control parameter. If we use the standard scaled variables, the rate equa- 
tions for the local concentrations are 

O,Xe(t ) = A - (B + 1 - q2Dx)Xq(t ) + L - d Z  2 X k X k ,  Yq_k_k, (4. I) 
k k' 

OtYq(t ) = BXq(t) - q2DyYq(t) - L - d E  EXkXk, Yq_k_k, 
k k" 

The inhomogeneous fluctuations around the uniform steady state X 0 = A, 
Yo = B / A then satisfy 

(~ tXq l=K(xq] -F  Nq(+1)  (4.2) 
~tYq] q\Yq]  - 1 
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where 

and 

When 

B - 1 - q2D x A 2 

Kq = - B - A 2 - q2D v ) (4.3) 

Nq = L--d/2EXk(k " "~B Xq_k + 2Ayq_k) 

+ L - a Z  ~ , x ~ x l , , y q_ l , _  ~, (4.4) 
k k' 

( D  x ~  )1/2__= ~7 < ~-1[(1+ A2) 1/2-  1] 

simple linear stability analysis predicts that a soft transition appears as the 
first instability. 

Indeed, for 

B = B~ = (1 + An) 2, 
the slow mode 

with frequency 

[q[ = qc = (A2 /DxDy)  1/4 (4.5) 

S q = (  I + A ~ I  ) 72 (4.6) 
A ~  Xq q- yq ,~2 _ 1 

s BcD'~q~IB-~c 2D• l % - Ac L + ~ (Iql - qc) 2 (4.7) 

becomes unstable. 
In this Gaussian description, the transition behavior is characteris- 

tically second order. 
On the other hand, the rapidly decaying modes 

T/ (1 + +yq] Rq = [ -~ An)xq ! (4.8) 
1 ~2 

with frequency 

~q = (A/~)(1 + A~/)(~ 2 - I) (4.9) 

which couple to the slow mode through the nonlinear terms are taken care 
of by a procedure of adiabatic elimination, (2) valid in the vicinity of the 
instability (Ws << ~ to lowest order 

L - d/2 
Rq ~ r ~'k Sk Sq - k  (4.10) 
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yielding the following time-dependent Ginzburg-Landau (3) equation for 
the critical mode written in dimensionless variables: 

a ~  + (q(~.) (4.11) O~Oq = - a--U- 
-q 

The characterization of the noise has been given in (2.2), and the Bra- 
zovskii (12) "free energy" ~" is 

1 ~-= ~ ~ff [ r0 + D([k I - q~)211o~[2 

with 

+L dJ2  22o o o 
�9 k k '  

- d  U + L ~ E E E~176176 ~ ~ ,  
k k' k" 

(4.12) 

( q2BcD v )J/2 
oq = r l ,0RI Sq = TSq 

O = 4 D x / S c ,  r0 = (Be  - B )~Be, "~ = v2rt  

The detailed structure of the coupling functions v =  v(A,~,F)  and u 
= u(A,rt, I') will not be needed here. (13) 

The essential feature of the potential, which has occurred in a variety 
of situations, lies in its degeneracy�9 There exists an infinite number of 
equivalent order parameters each associated with the choice of a set of 
wave vectors of length q~. Each set is characterized by the number of 
vectors and their relative orientation�9 We will show that the nonlinear terms 
provide a pattern selection mechanism already in the mean-field picture. 
We will then test the influence of the fluctuations on such structures�9 

The problem of the nucleation of these structures remains an open 
problem and will not be considered here�9 

4.1. Landau Theory 

In the mean field approximation the most probable configurations 
(which minimize 6-) are such that D ( I q ] -  qc) 2 =  0. They are therefore 
characterized by an order parameter of the form 

Oq = ~ '  ~ 
i=1  

= ~ ai(~q,q, + 6q,-q,)~lq, i,q, ( 4 . 1 3 )  
i=1  
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o r  

~(r) = 2 ~ aicos[ q~(lr . r ) ]  
i = l  

where we have chosen m pairs of vectors qi and - q i  to form our pattern. 
Then the functional (4.12) becomes in this approximation 

v= 2 
k k' 

k k' k"  

Id L - 3d/2 + ~ . -  z.~ 2 Z ZakO~'Ok"O~'"3k+k'+k"+k'",O (4.14) 
k k" k" k'" 

We first consider situations where the m pairs are "independent." By this 
we mean that 

and 

8k~+kl~+kv,O = 0 

~k~+kB+kV+ksO ~--- ~k~+ki~O~kV+k~,O 

or permutations thereof. Then, putting (4.13) into (4.14) and collecting all 
terms, we get 

m ~ ~, ~a/ 
i_~ 1 u a4+ u ~ a (4.15) I'm = r~ a2+ -4 i = l  i = t  j < i  

Then straightforwardly we obtain the equation of state 

1 ~ Vm _ hi = r o a i  + u m m 
2 3a i 2 ~ a7 + u ~  ~,  aia ~ (4.16) 

i=1  i ~ l  j < i  

(where the h i are fictitious symmetry-breaking fields) and the elements of 
the inverse susceptibility matrix 

1 
2 Oaiaa i - rii = r~ + u a~ (4.17) 

j = l  

l OVm 
2 3a i ~aj - rij = uaiaj 

For all h i = 0, the amplitudes are all equal to 

{~ , B < B c 
ai (4.18) a 

- 2 r o / ( 2 m -  l )u]  ~/2, B > B~ 

which is again characteristic of a second-order transition, as indeed the 
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susceptibility diverges at B = B c: 

rii = - r o / ( 2 m  - 1) (4.19) 

The relative stability of the various phases may be calculated by compari- 
son of the corresponding generalized thermodynamic potentials (4.14) (in 
this scale, the uniform phase with a -- 0 has V 0 -- 0): 

Vm = - [ m / ( 2 m  - 1) l r ~ / u  < V o 

and 

Vm>V,._, 
Therefore the stablest phase (with "independent vectors") corresponds to 
m = 1. In this case the concentration varies periodically in the direction 
conjugate to ql and 

~,(r) = [8(B - B c ) / B c u ]  1/2 cos(q~x) (4.20) 

This situation presents great analogies with the roll pattern of the convec- 
tive instability. 

When m = 4, a new possibility arises, as the four pairs may, for 
instance, be along the diagonals of a cube, in which case we have non- 
coplanar wave vectors satisfying the quadrangular r e l a t i o n  ~q,+q2+q3+q4, 0 
giving extra contributions to the potential: 

Vfc c = V 4 -Jr- 2uata2a3a 4 (4.21) 

There is then a transition of second-order type to a structure where the 
concentration maxima have fcc periodicity. However, Vfc c > V~. 

On the other hand, when we have sets of vectors arranged to form 
equilateral triangles, we get contributions from the cubic terms. The sim- 
plest case occurs for m = 3, the triangle itself. Then 

Vtr = V 3 -1- vala2a3 (4.22) 

and the corresponding equation of state in zero fields is 

a ( r  o + va + ~ua z) = 0  (4.23) 

leading to a first-order subcritical transition giving rise to rod-like structures 
with 2d hexagonal periodicity 

" t r ( r ) = 2 a { c o s ( q c x ) + c o s [ � 8 9  + '/3 y)  ] 

+ cos[ 
We expect on the basis of symmetry arguments due to Landau that there 
will be no critical point. The new phase appears for r0= r t r  = "I)2/10U; 
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however, the stability exchange with the uniform phase takes place at 
r o = r'tr = 4v2/45u. The pattern is immediately reminiscent of the B6nard 
hexagonal  cell structure. This analogy m a y  be carried even further. De- 
pending on the sign of  v, the maxima of concentra t ion define, respectively, 
a triangular (v < 0) or a h o n e y c o m b  (v > 0) lattice corresponding in the 
convect ion problem respectively to l- and  g-hexagons as defined by 
Busse.( 14),3 

For  m = 6, the triangles can be chosen to form an octahedron.  The 
equation state is then 

a(r o + 2va + ~ua 2) = 0  (4.25) 

We thus obtain, again subcritically, structures with 3d cubical symmetry,  

Ooct ( r )  = 2a[cos( �89 �89 Y) 

+ cos(�89189 

+ cos(�89 qc~- y)cos(�89 (4.26) 

The corresponding parameters  are 

roct = (2/l l)v2/u,  roct = (16/99)v2/u 

W h e n  v < 0 the pattern of the concentrat ion maxima forms a bcc lattice, 
whereas v > 0 leads to filamental structures with cubic symmetry.  These 
structures are the first to appear, a situation which presents analogies with 
the theory of the freezing transition. (15)'4 

Using mean  field theory, we have predicted the occurrence of a great 
variety of patterns. The stability analysis shows that a selection among  
these emerges. It shows that when v =P 0 various structures may  appear  
through successive first-order transitions, f rom patterns having cubic sym- 
metry to the format ion of rolls (see Fig. 1). M a n y  analogous analyses for 
various systems have been carried out, among  which we mention,  because 
of their close relation to this work, the B~nard problem (14'16) and morpho-  
genesis. (2) 

3 In /-hexagons (v < 0), often realized in liquids, the fluid rises near the center of the cells. 
Conversely, in g-hexagons (v > 0) it rises along the boundaries of the cells, as happens 
typically in gases. The dominant cause for the existence of v 4:0 in the convective instability 
is the temperatur e dependence of the viscosity. 

4 There, it has been observed experimentally that almost all metals on the left-hand side of the 
periodic table are known to be bcc near the melting line at low pressure. 
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13<0 

b c c  

,", " "I', " . J  

roct:, tr: g c B 
r J r I 
oct tr 

Fig. 1, Bifurcation diagram (schematic) in the mean field approximation. Heavy lines denote 
the stablest structures. Y= Bc(l + r). 

4.2. Effects of Fluctuations 

As shown by Brazovskii, (12) the fluctuations deeply alter the mean 
field picture. We first analyze the situation in the light of general symmetry 
arguments. In the ordered phase the Ward-Takahashi  identities that result 
from the breakdown of translational symmetry lead to the following rela- 
tions between the elements of the inverse correlation matrix r9 = (g)~] i : 

~]~ (rij _ ri_j)aij = h , Vi C ( 1 , . . . ,  m} (4.27) 
j =  1 ai 

where h is a fictitious symmetry-breaking field, the %. are factors which 
depend on the structure considered, and 

g~ = (%o~)  - ( % ) ( % )  

In particular, for structures characterized by m independent pairs of wave 
vectors, the relations (4.27) reduce to 

r i i -  ri_ i = h / a  i (4.28) 

r i k - - r i _ k = O ,  Vi, k E  {1 . . . . .  m} 

from which it is easily found that the corresponding correlation functions gii 
and gi-i  diverge as h -  l for small fields. This is a consequence of the high 
degree of degeneracy of the order parameter. As a result, long-range 
fluctuations may develop in all the ordered phases. The response of the 
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system to a long-wavelength deformation of the structure 

o'(r) = o ( r -  ~cosk �9 r) (4.29) 

may be computed (1~1 infinitesimal and Ikl/qc << 1). 
In zero field, the increment to the functional (4.12) is 

/ - �89 (q �9 ~)[oq(o_q+~ + ~_q_~) a~ = ~ ~( Iq l  q~)2 
q 

- (oq+ k + oq_k)O_q] (4.30) 

The following Schwarz inequality has to be satisfied: 

( % + ~ o _ q _ ~ ) ( 6 ~ 6 ~ , )  >1 I(o q _ k 6 ~ ) l  2 (4.31) 

and may be evaluated, since for any operator K, we have 

(K3ff f f )  = (K)~  - (K)~+ae,  (4.32) 

Furthermore, using the consequences of the Ward-Takahashi identities 
that result from the breakdown of rotational symmetry, we get the follow- 
ing Bogoliubov inequalities(4) : 

K 2 (4.33) s~,+~,~,+, ~ (~" ~2a~ 2 ( j,+ + ~ )(qj. ~)~ 
1 

where 

These formulas imply the destruction of any long-range order by 
fluctuations for d < 2 infinite systems. For structures characterized by m 
independent pairs of wave vectors, the rotational symmetry argument leads 
to the more stringent inequalities 

gq,+k,q,+~>~ 1/(414(qi �9 k)2 + k4]} (4.34) 

As a consequence, all of these structures are also destroyed by the fluctua- 
tions in infinite d = 3 systems (for m = 1, this result is analogous to the 
impossibility of one-dimensional crystals existing in three-dimensional sys- 
tems as argued by Landau and Peierls), and only the structures character- 
ized by wave vectors that satisfy definite angular relations (i.e., bcc, 
hexagonal prisms, fcc, etc.) remain. In contrast, the first-order transitions 
induced by the cubic terms (v v ~ 0) are only slightly affected by fluctuations 
(as long as vZ/u << Irl), whereas the second-order transition to a fcc struc- 
ture is transformed into a first-order transition as shown below. 

The mean field picture is thus qualitatively modified. However, finite 
dimensions may stabilize some structures by inhibiting the long-range 
fluctuations. This happens, for instance, in three dimensions when 
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r l / 2 q ~ - l l n q c L  << 1 (L is the linear dimension of the system). In this regime, 
Brazovskii's approximation leads to the following equation for the inverse 
susceptibility associated with a pattern of m independent modes (rii = r; 

(2m - l)r  + e~uD - l / 2 r - 1 / 2  4- r 0 = 0 (4.35) 

The equation of state in the absence of an external field may then be 
written as ((a/)  = o) 

ro - �89 uo 3 = 0 (4.36) 

Therefore the corresponding nonuniform state may arise with a finite 
amplitude % = ( 2 r m / U )  1/2 when 

- r 0 ) r,, = 3(2m - 1 ) V 3 ( a u / 2 D  1/2) 2/3 (4.37) 

This structure becomes more stable than the uniform state for r m < 

r m < r  m, where r~, defines the first-order transition temperature. The 
stability of the structure increases with decreasing m and the patterns with 
small m are the first to appear, contrary to the conclusions reached by 
Brazovskii. (12) However, for finite dimensions the system eventually devel- 
ops fluctuations, the correlation length of which becomes larger than the 
size of the system itself. Indeed, when 

ro"~ D / L 2  ~ 1/L2q2~ = r L (4.38) 

the problem becomes zero-dimensional with all the consequences discussed 
in Section 3. 

On the other hand, the fluctuations invalidate the Landau mean-field 
theory when 

I 3 x 2 / 3  
r o ~ r,~ ~ ~qcu)  (4.39) 

For equilibrium phase transitions, it is well known that r c << r m. On the 
other hand, for most instabilities far from equilibrium r c > r m and the 
transition takes place in the zero-dimensional regime. Because of their 
flexibility, chemical instabilities might, however, be an exception. We thus 
see that there appear two classes of dissipative structures. In the first, 
because they must be stabilized by the finite dimensions of the systems, the 
general theorems resulting from the breakdown of the translation and 
rotation symmetry are not applicable. On the contrary, in the second class 
the instability is analogous with equilibrium first-order transitions, such as 
crystallization. 
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5. HARD MODE TRANSITION TO CHEMICAL OSCILLATIONS 

A hard  mode  transit ion to chemical  oscillations occurs in the Brus- 
selator at  B = B c = 1 + A z and q = 0 when ~ > ( l /A) [ (1  + A2) 1/2 - 1], 

since in this case B / < B c. Around  this instability point  the linear stability 
analysis gives as characterist ic eigenfrequencies 

r 1 8 9  B ~ - q 2 ( D x  + D y ) + _ 2 i A { 1  + �89 [q2(D x - D r )  ] 

- ( 1 / 4 A 2 ) [  B - B : -  q2 (D x - Dv)2] ) )  (5. t )  

The  corresponding eigenvectors (at the lowest order  in B - B~' and q2) are 

Rq - i ~?  ( A_~ iXq q_ yq), Sq = R; (5.2) 

The associate nonl inear  Langevin  equat ions m a y  easily be writ ten in the 
rotat ing wave approx imat ion  (valid in the vicinity of the instability where 
A >> B - B~') as 

fAdk'fAdk" O~Wk = - [ ~ +  ck~]W~ - u w~_~,_~ , ,w~w~, ,+  n~ (5.3) 

W k = R k e  iA,, ( r / k ~  5 = 2 r  8(,~ - ~-') 8 ( k  - k ' )  

r =  r 1 + j r 2 ,  c =  l + ic2, u =  u l + iu 2 

l ( B - B ' ) 2  2 A ( D  x - D Y )  

B~' ' r2 - 2A B~ ' c2 = D x + D v 

(A 2 + 2)B'~ a - '  (4 - 7A 2 + 4A4)B'dc -1 
u I = u 2 = (5.4) 

2A2(Dx + D y )  d ' 3A3(Dx + D y )  a 

k 2 _ (D  x + D y )  
B; 

B~' - B 
?'1-- 

with 

r = 2B'~t, 

Here  also the noise term has been taken constant.  These equat ions admi t  
no potent ial  and  the critical behavior  is ob ta ined  through the direct 
appl icat ion of the dynamica l  renormal izat ion group on these kinetic equa- 
tions. Let us not  that  when r , c , u  are real the system is an n = 2, t ime- 
dependen t  G i n z b u r g - L a n d a u  model .  The  general case (r, c, u complex)  has 
been extensively studied by  Hentschel  (~v) and  we review his results as 
applied to the specific case of the Brusselator. The  mean  field behavior  of 
the system deduced f rom (5.3) is given by  

( W k ( r ) )  = W ( r )  Sk, o -- I W ( r ) r e - i ~ 6 k , o  (5.5) 
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with 

B r  1 

u , -  (u 1 + r,[ W ( 0 ) l - 2 ) e x p ( 2 r ?  -) ' rl @ 0 

I = i w(0)12 
1 + 2utl W(0)12"r ' r, --- 0 

= r 2 + u21W(r)l 2 

2F exp(  - [ r  1 + k 2 i ( r  2 +c2  k2) ] r  } ( W ~ ( ' r ) W k ( O ) )  - r l  "[- k2 + 

The system consequently exhibits at r 1 = 0 a second-order-l ike transition to 
chemical  oscillations, since in the limit r --> m,  Eq. (5.5) gives 

0, r I > 0 
Iw(r)l-  r,<O 

60--+ [ r2, r~ > 0 
l r 2+u21ql /ut ,  r , < O  

The effect of the f luctuations on this instability m a y  be computed  with the 
use of the dynamica l  renormal izat ion group. Let  us recall that  it is defined 
by the following change of scale: 

k-+ k' = sk 
A ~ A ' =  sA 

W---> W' = saW 

the f requency scaling ~--->0a' = s~r and  the operat ion consisting in the 
el imination of the wave vectors in the domain  A / s  < k < A. This proce- 
dure m a y  be pe r fo rmed  on the d iagrammat ic  expansion in u of any 
quant i ty  and  leads for B--> B~ to the following Wi l son-F i she r  recursion 
relations for F, u, r at the lowest order  in e = 4 - d [the scaling exponent  of 
the order pa ramete r  a has been chosen as usual by requiring that  Cl = 1 
remain  unchanged,  a = (d - 2 ) / 2  + o(e2)]: 

rT+', -- s2-ZF[l[1 + o(e2)] 

rt+,=s2[rl + 8 K 4 u , ( 1 - s - 2 - 2 r ,  lns)], 

ul+1 = s '  u l -  8K4 1 ~--ic 2 + 4UlUl! Ins  

r~<<l 

The  existence of a nonvanishing fixed point  value for F requires z = 2 + 
o(e2). One  consequently finds two fixed points:  the Gauss ian  one, r* -- u* 
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= 0 stable for d > 4; and the nontrivial one: 

r~ = - e /5,  u~' ~- s  4 

r~ = - c2~ / 5, u~ = c~,/5K4 

Here also the fact that r* and u* are of order e justifies the expansion 
procedure used to derive the recursion relations. The critical behavior of 
the system in then given through the linearized recursion relations around 
the fixed point, leading to the following scaling fields: 

For d > 4 we have 

r 1 ---> S2rl,  r 2 --) $2r2 

Ul--> sCul, u2--~ s~u2 

In this case the critical indices are classical, since 

Wk('r; rl,rz,ul,Uz)-->sW,~('rs-2;s2rl,s2r2,s~ul,s~u2), e < 0 

Namely the correlation function (W~(~-)W~(0)) behaves as 

2F(k) exp[ - r~/~(k)] 
where 

r - l ( k )  = k 2 + 4, -2  + i(c2 k2 + 42 -2)  = k-2g(k4,,k42) 

F ( k )  = F / ( k  2 + 41-2) = k-2f(k41) 

F ( 0 ) ~ R e ~ - 1 ( 0 ) ~ r {  ', 

4 1 ~ r s  ul, 

w i t h Y 1 = Y 2 =  1 a n d v  l = v  2 - � 8 9  
For d < 4  the scaling fields are 

a~d 

I m ~ - l ( 0 ) ~ r ~  ~ 

4 2 ~ F 2  v2 

gl = r l  "Jr" g 4 u l ~  

g3 ~ u2 - C2Ul,  

Wk($; gl, g2, g3, g4) 

= S W s k ( T  S --2; $2--2r 1 ; s 2 g 2 , s - e / 5 g 3 , s - e g 4 )  ' 

We have in this case 

r ( k )  = r / ( k  2 + 41-2) = k-2f(k41) 

�9 - ' (~ )  = k ~ + 41-2 + i[ c~(k 2 + 41-2) + 4 ; 2 j  = k-~g,(~41,~42) 

g2 = ( r2  - c 2 r l )  + K4(u2 - c2u1) 

g4  = b/1 - -  /J* 

e > 0  

the two correlation lengths are defined as 

41 = rl- 1/2, 42 = r f  1/2 

and the corresponding critical indices are 
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and 

41 = gl -"' ,  42 = g2.2 

with 

1 1 
u l -  2 - 2 c / 5  ' ~ ' t = ~  

while Yl = 2tq and Y2 = 272. 
The conclusion of this analysis is that in the disordered phase the 

fluctuations modify the critical behavior for d < 4 in the following way: 
1. The critical point is shifted, since it is now defined by gl = rl + K4ul 

= 0 or Bc = B j(1 + K4u O, where Bc is the true critical value of B. 
2. The scaling behavior of the correlation functions is given with 

nonclassical exponents associated to two correlation lengths. 
Due to the similarities between this model and the Ginzburg-Landau 

model, the study of the ordered phase would be of particular interest, since 
one expects the existence of Goldstone modes in this regime. The effects of 
these modes may deeply affect the dynamics of the system and we hope to 
come back to this problem in the future. 

6. CONCLUSIONS 

We have illustrated the application of the methods of equilibrium 
phase transitions to nonlinear chemical models in the vicinity of instability 
points. We have shown that the system can in principle display departures 
from the mean field predictions even qualitatively. In most hydrodynamic 
instabilities and in the case of the laser threshold these deviations from the 
classical theory are hidden by finite-size effects, which determine the 
behavior near transitions. Due to the large variability of chemical rate 
constants, chemical systems remain good candidates for the observation of 
nonclassical behavior despite the great experimental difficulties. On the 
other hand, in certain driven condensed matter systems, the various recom- 
bination processes may be described in terms of a phenomenological 
reaction-diffusion equation similar to (2.1) and the conclusions of this 
paper might be of some relevance in such a context. 
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